132 research outputs found

    Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium subterraneum

    Get PDF
    Tropospheric ozone is a major air pollutant affecting plants worldwide. Plants in northern regions can display more ozone injury than plants at lower latitudes despite lower ozone levels. Larger ozone influx and shorter nights have been suggested as possible causes. However, the effects of the dim light present during northern summer nights have not been investigated. Young Trifolium subterraneum plants kept in environmentally controlled growth rooms under long day (10 h bright light, 14 h dim light) or short day (10 h bright light, 14 h darkness) conditions were exposed to 6 h of 70 ppb ozone during daytime for three consecutive days. Leaves were visually inspected and imaged in vivo using thermal imaging before and after the daily exposure. In long-day-treated plants, visible foliar injury within 1 week after exposure was more severe. Multivariate statistical analyses showed that the leaves of ozone-exposed long-day-treated plants were also warmer with more homogeneous temperature distributions than exposed short day and control plants, suggesting reduced transpiration. Temperature disruptions were not restricted to areas displaying visible damage and occurred even in leaves with only slight visible injury. Ozone did not affect the leaf temperature of short-day-treated plants. As all factors influencing ozone influx were the same for long- and short-day-treated plants, only the dim nocturnal light could account for the different ozone sensitivities. Thus, the twilight summer nights at high latitudes may have a negative effect on repair and defence processes activated after ozone exposure, thereby enhancing sensitivity

    Chlorella saccharophila cytochrome f and its involvement in the heat shock response

    Get PDF
    Cytochrome f is an essential component of the major redox complex of the thylakoid membrane. Cloning and characterization are presented here of a novel partial cDNA (ChspetA) encoding cytochrome f in the psychrophile unicellular green alga Chlorella saccharophila and its involvement in the heat shock (HS) response pathway has been analysed. Semi-quantitative reverse transcriptase PCR analysis showed that ChspetA expression is up-regulated in heat-shocked cells and the protein profile of cytochrome f highlighted a release of cytochrome f into the cytosol depending on the time lapse from the HS. Evans Blue assay, analysis of chromatin condensation, and chloroplast alterations showed the induction of cell death in cell suspensions treated with cytosolic extracts from heat-shocked cells. This study identifies cytochrome f in C. saccharophila that seems to be involved in the HS-induced programmed cell death process. The data suggest that cytochrome f fulfils its role through a modulation of its transcription and translation levels, together with its intracellular localization. This work focuses on a possible role of cytochrome f into the programmed cell death-like process in a unicellular chlorophyte and suggests the existence of chloroplast-mediated programmed cell death machinery in an organism belonging to one of the primary lineages of photosynthetic eukaryotes

    Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

    Get PDF
    Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.Peer reviewe

    Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae

    Get PDF
    Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress

    Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia

    Get PDF
    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality
    corecore